当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差性质的推导
方差D=d^2(d为均方差)
D(x)=E{[x-E(x)}^2}=E{x^2-2xE(x)+[E(x)]^2}=E(x^2)-2E(x)E(x)+[E(x)]^2
=E(x^2)-[E(x)]^2