您好,chz应该是双曲余弦函数的缩写,ch z=[e^z+e^(-z)]/2。双曲余弦函数是双曲函数的一种。三角函数分正弦sin、余弦cos、正切tan、余切cot、正割sec、余割csc六种。那么,类似的,双曲函数也分为双曲正弦、双曲余弦、双曲正切、双曲余切、双曲正割、双曲余割六种。双曲余弦函数也是其中一种。双曲余弦函数记作cosh,也可简写为ch。
一、复变函数
复变函数,是指以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。
复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。
复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。现时,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。
双曲余弦函数chz的定义
chz是双曲余弦,chz=[e^z+e^(-z)]/2=0两边乘以2e^z得e^2z+1=0所以2z=Ln(-1),那么z=0.5Ln(-1),注意z的值有无穷多个